Module CamlInterface.Rel2

module Rel2: sig .. end

type ('a, 'b) t 
val name : ('a, 'b) t -> string
val create : ?k1:'a CamlInterface.Univ.key ->
?k2:'b CamlInterface.Univ.key -> string -> ('a, 'b) t
val get : ('a, 'b) t -> CamlInterface.Logic.T.t -> ('a * 'b) option
val make : ('a, 'b) t -> 'a -> 'b -> CamlInterface.Logic.T.t
val apply : ('a, 'b) t ->
CamlInterface.Logic.T.t -> CamlInterface.Logic.T.t -> CamlInterface.Logic.T.t
val find : CamlInterface.Logic.DB.t -> ('a, 'b) t -> ('a * 'b) list
val subset : CamlInterface.Logic.DB.t ->
('a, 'b) t -> ('a, 'b) t -> unit
subset db r1 r2 adds to db the axiom that r2(X,Y) :- r1(X,Y); in other words, r1 is a subset of r2 as a relation
val transitive : CamlInterface.Logic.DB.t -> ('a, 'a) t -> unit
Axioms for transitivity are added to the DB
val symmetry : CamlInterface.Logic.DB.t -> ('a, 'a) t -> unit
Axiom for symmetry (ie "r(X,Y) <=> r(Y,X)") added to the DB
val from_fun : CamlInterface.Logic.DB.t ->
('a, 'b) t -> ('a -> 'b -> bool) -> unit
The given function decides of the given relation (if it returns true for a couple of constants, then the relation holds for those constants)
val add_list : CamlInterface.Logic.DB.t ->
('a, 'b) t -> ('a * 'b) list -> unit
Add given list of axioms
val to_string : ('a, 'b) t -> string
val fmt : Format.formatter -> ('a, 'b) t -> unit